summary

Generative Adversarial Networks (GANSs) are neural

networks that learn to map a simple probability distribution
to the training data distribution. Through adversarial
training, they learn to generate realistic artificial examples

of their training dataset.

GANS, especially their variants such as the conditional GAN,
are applicable to many Earth Science data problems:

In this poster, we demonstrate proofs of concept for several
applications of GANs to problems related to clouds and

* GANs are inherently probabilistic and therefore a
good fit for tasks requiring infererence from
incomplete data
» Using convolutional neural networks, GANs can
generate complex spatial patterns, commonly

encountered in many Earth Science applications

precipitation.

Reconstructing Clouo

Vertical Profiles

Data: Cloud vertical profiles (2D) from the CloudSat

cloud radar and retrieved cloud properties (1D) from
the MODIS optical spectrometer.

Question: Can we use CGAN to generate the cloud
vertical profile using only the MODIS variables as
input?

Result: The CGAN can generate realistic cloud
profiles and also estimate the uncertainty of its
predictions through sample diversity.
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Generative Adversarial Networks (GANS)

* Once trained, this can be applied to the real
samples to extract their essential features
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Basic GAN: Adversarial training between two neural networks f
samples from generated ones X G
e The generator learns to fool discriminator as much oo
: : . Discriminator
as possible, transforming random noise into D
samples that resemble those in the training set }
Real/fake
Conditional GAN (CGAN): Learns a conditional data Nozise
distribution rather than the global distribution ¢
e In addition to the random noise, a Real samples Generator
conditioning variable is passed to the X ¢ ¢ G 1 Condition
generator and the discriminator Discriminator I y
e Generator produces realistic examples D
subject to the condition v
Real/Fake giveny
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InfoGAN: Recovery of latent variables f
e Discriminator also predicts the latent variable Real samples Generator
passed to the generator X ¢ G

Downscaling Weather
Radar Data

Data: Precipitation fields from a composite of the
MeteoSwiss weather radar network.

Question: Can we recover high-resolution
precipitation from reduced-resolution data?

Result: The CGAN can generate realistic solutions
and can often infer the type of precipitation from
the low-resolution data.
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Classifying Snowflakes

Data: Images of snowflakes from the Multi-Angle
Snowflake Camera (MASC) deployed in Davos,
Switzerland in 2015-16.

Question: Can we classify the snowflakes in an
unsupervised way using InfoGAN?

Result: We can classify snowflakes and organize
them as a "family tree" using InfoGAN-derived latent
variables in combination with the K-medoids
algorithm and hierarchical clustering. Data
augmentation is used to make the classification
insensitive to some features such as rotation.
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More Information

My blog on GANSs, atmospheric science et al.,

with a GAN tutorial series in the making:
R : : Elig5E

https://jleinonen.github.io/ s

Code repository for the localized StyleGAN
for precipitation data:
https://github.com/jleinonen/geogan g




